Abstract

Winter oilseed rape (OSR) is becoming an increasingly popular crop in rotations as it provides a cash crop and reduces the incidence of take-all fungal disease (caused by Gaeumannomyces graminis) in subsequent wheat production. The exact mechanism of this inhibition of fungal pathogens is not fully understood; however, the selective recruitment of bacterial groups with the ability to suppress pathogen growth and reproduction is thought to play a role. Here we examine the effect of tillage practice on the proliferation of microbes that possess the phlD gene involved in the production of the antifungal compound 2,4-diacetylphloroglucinol (2,4-DAPG), in the rhizospheres of both winter oilseed rape and winter wheat grown in rotation over a two-year period. The results showed that conservation strip tillage led to a significantly greater phlD gene copy number, both in the soil and in the roots, of oilseed rape and wheat crops, whereas crop rotation of oilseed rape and wheat did not increase the phlD gene copy number in winter wheat.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call