Abstract

Maternal infections during pregnancy can increase the risk to offspring of developing a neurodevelopmental disorder. Given the global prevalence and severity of infection with Severe Acute Respiratory Syndrome related Coronavirus 2 (SARS-CoV-2), the objective of this study was to determine if in utero exposure to severe maternal SARS-CoV-2 infection alters infant neurodevelopmental outcomes at 12 months and to identify potential biological markers of adverse infant outcomes. Mother-infant dyads exposed to severe SARS-CoV-2 infection (requiring hospitalization) during pregnancy and age and sociodemographic matched control dyads were recruited from Monash Medical Centre, Australia in 2021/22 and prospectively assessed over 12 months. Maternal serum cytokine levels and Edinburgh Postnatal Depression Scale (EPDS) scores were assessed at birth. DNA methylation was assessed from infant buccal swabs at birth (Illumina EPIC BeadChip). Infant neurodevelopmental outcomes at 12 months were assessed using the Ages and Stages Questionnaire (ASQ-3). Mothers exposed to severe SARS-CoV-2 exhibited elevated serum IL-6 and IL-17A and higher EPDS scores than controls at birth. Infants exposed to severe SARS-CoV-2 in utero demonstrated over 3000 significant differentially methylated sites within their genomes compared to non-exposed (adjusted p-value < 0.05), including genes highly relevant to ASD and synaptic pathways. At 12 months, severe SARS-CoV-2 exposed infants scored lower on the ASQ-3 than non-exposed infants, and communication and problem-solving scores negatively correlated with maternal IL-6 levels at birth. DNA methylation changes therefore unveil potential mechanisms linking infection exposure to delayed neurodevelopment and maternal serum IL-6 levels may be a potential biomarker of child developmental delay. Mothers exposed to severe SARS-CoV-2 infections show elevated pro-inflammatory cytokines. Infants exposed in utero to severe SARS-CoV-2 infection show altered DNA methylation at birth and delayed development at 12 months of age. Created in Biorender.com.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.