Abstract
This paper presents a comprehensive computational fluid dynamics (CFD) analysis of air/water flow through a discharge valve, focusing on four different seat–valve distances and three adjustment nozzle positions. The study investigates the velocity distribution, pressure profiles, tangential stresses, and turbulent kinetic energy within the valve and analyzes its performance under various operating conditions. Notably, peak velocities of 3210 m/s were observed between the valve seat and valve, with significant variations for different nozzle positions. Extreme pressure values centered on the valve plate, reaching 4.3 MPa. Tangential stresses were highest on the chamfered plate surface and varied on the seat, turbulent kinetic energy (TKE) exhibited randomness. This study provides valuable information for enhancing the valve’s efficiency in a wide range of industrial applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.