Abstract

The deposition of amorphous hydrogenated silicon nitride (a‐SiNx:H) via plasma‐enhanced chemical vapor deposition is critical for optimizing the performance of crystalline silicon (c‐Si) solar cells. This study investigates the impact of varying gas ratios (GR = NH3/SiH4) on the optical and physical properties of deposited SiNx films. Results show that the refractive index (RI) ranges from 1.8 to 2.3 with changing gas compositions. Fourier transform infrared Spectroscopy reveals shifts in [SiNH] and [SiH] stretching modes, indicating changes in hydrogen passivation and nitrogen incorporation. Hydrogen bonding densities of [SiH] and [SiNH] correlate positively with the RI. For example, the hydrogen bonding density [NH] ranges from 4.53 × 1023 to 6.32 × 1023 cm−3 for [SiNH] bonds while [Si‐H] varies from 6.93 × 1023 to 1.06 × 1024 cm−3. Secondary ion mass spectrometry (SIMS) analysis shows stable hydrogen intensity, contrasting with a decrease in nitrogenhydrogen bonds. These findings highlight the key role of hydrogen bonding in determining SiNx film properties, with significant implications for semiconductor and photovoltaic applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.