Abstract

Functional magnetic resonance imaging (fMRI) is a popular approach for understanding the functional connectivity of human brain. Recently, dynamic functional connectivity has been used to analyze connectivity variations on resting state fMRI. Here, we use task based fMRI (using the Poffenberger Paradigm) data collected in mono- and dizygotic twin pairs. The task is to examine if the two groups of twins can be discriminated by using the dynamic connectivity, so to prove that genetic background has an effect on functional connectivity. To this aim, we have explored the dynamic connectivity patterns of task-relevant and task-orthogonal sub-networks using graph Laplacian representation in combination with a metric defined on the space of covariance matrices to compute the similarity between twins' dynamics in the mental state. Linear SVMs with an unsupervised feature selection (Laplacian Score) were then used to discriminate the two classes of twins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.