Abstract

With the goal to maximize intake of high-fermentable diet needed to meet energy needs during weaning period, calves are at risk for ruminal acidosis. Using the calves from previously established model of feed-induced, ruminal acidosis in young calves, we aimed to investigate the changes in rumen epimural transcriptome and its microbial metatranscriptome at weaning (8-week) and post-weaning (17-week) in canulated (first occurred at 3 weeks of age) Holstein bull calves with feed-induced subacute ruminal acidosis. Eight bull calves were randomly assigned to acidosis-inducing diet (Treated, n = 4; pelleted, 42.7% starch, 15.1% neutral detergent fiber [NDF], and 57.8% nonfiber carbohydrates), while texturized starter was fed as a control (Control, n = 4; 35.3% starch, 25.3% NDF, and 48.1% nonfiber carbohydrates) starting at 1 week through 17 weeks. Calves fed acidosis-inducing diet showed significantly less (p < 0.01) body weight over the course of the experiment, in addition to lower ruminal pH (p < 0.01) compared to the control group. Rumen epithelial (RE) tissues were collected at both 8 weeks (via biopsy) and 17 weeks (via euthanasia) and followed for whole transcriptome RNA sequencing analysis. Differentially expressed genes (DEGs) analysis was done using cufflinks2 (fold-change ≥2 and p < 0.05) between treated and control groups at 8-week of age, and between 8- and 17-week for the treated group. At 8-week of age, DEGs between treatment groups showed an enrichment of genes related to the response to lipopolysaccharide (LPS) (p < 0.005). The impact of prolonged, feed-induced acidosis was reflected by the decreased expression (p < 0.005) in genes involved in cell proliferation related pathways in the RE at 17-week of age in the treated group. Unique sets of discriminant microbial taxa were identified between 8-and 17-week calves in the treated group and the treatment groups at 8-week, indicating that active microbial community changes in the RE are an integral part of the ruminal acidosis development and progression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call