Abstract

The research focus has shifted towards lightweight structures with high energy absorption capabilities due to advancements in automotive safety technology. This study specifically investigates the impact of cross-sectional area on the energy absorption characteristics of hemispherical composite shells. The experimental phase involves characterizing a glass fiber epoxy composite, followed by the manufacture of hemispherical composite shell specimens with varying cross-sectional areas. These specimens undergo quasi-static axial compressive loading, and the energy absorption parameters are analyzed. The results indicate a significant influence of the composite cross-sectional area on the crushing behavior of hemispherical shells, with a observed decrease in specific energy absorption as the cross-sectional area increases. Additionally, a 3D Finite Element (FE) model is created using ABAQUS FE code to numerically simulate the crushing process. The model’s predictions are compared and validated against experimentally measured values, demonstrating a satisfactory correlation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.