Abstract

Rice cultivation faces challenges such as declining soil health, nutrient depletion, and environmental pollution caused by industrial waste. The integration of bio-digested bone sludge compost industrial waste with other organic and inorganic fertilizers needs to be studied for achieving long-term sustainability of agricultural systems. Therefore, a field experiment took place during the 2022 at the Annamalai University, Tamil Nadu, India with an aim to examine the impact of incorporating bone sludge, a by-product of the ossein industry, as a fertilizer in conjunction with various other organic fertilizers, including bone sludge compost, pressmud compost, poultry manure compost, goat manure compost, and farmyard manure, on the growth, yield, nutrient uptake and post-harvest soil status of rice. The experiment was laid out in a randomized block design with three replications. The experiment comprised eight treatments. The results of the experiment revealed that among the different treatments tested, application of bone sludge compost @ 5 t/ha + pressmud compost @ 5 t/ha along with balance N and K through fertilizers excelled all treatments and gave significantly higher nutrient uptake of 151.10, 63.51, 147.05 kg/ha of nitrogen, phosphorous, potassium respectively also recorded highest post-harvest soil available nutrient of 222.98, 110.23, 276.21 kg/ha of nitrogen, phosphorous, potassium when compared to other treatments. The results of this study underscore the efficacy of utilizing bone sludge compost and pressmud compost, coupled with meticulous fertilizer management, to augment nutrient assimilation in rice crops and bolster soil fertility post-harvest. These findings present compelling evidence for the adoption of sustainable agricultural strategies aimed at enhancing crop productivity while concurrently preserving soil health.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.