Abstract

In recent times, more wells are being drilled and producing in the petroleum industry. To prevent early workover resulting from casing collapse caused by corrosion, shattering of cement sheath during perforation and fracturing, and to protect the integrity of the well, it is important to use properly designed cement slurry with appropriate additives to protect the well from the formation. The development of adequate thickening time cement is a critical task in cementing operations today. Achieving suitable thickening time of oil well cement ensures both prevention of lost circulation and a long wait on cement time. With this in mind, this research work shows a comparative study of the thickening time of oil well cement with achi and without achi contamination under different temperature of 130 ℉, 150 ℉, 200 ℉, and 250℉ and pressure conditions of 1000 psi, 1500 psi, 2000 psi and 3000psi respectively for all the experiment conducted. The thickening time of cement slurry without achi content at 70 Bc were 205, 215, 202 and 200 minutes respectively. The experiment was also conducted under different achi content ranging from 2 g, 4 g, 8 g, 10 g to 12g. The results and analysis were compared. The result with 2g achi content were 164, 147, 146, and 141 minutes. The results with 4g achi content were 127, 131, 130, and 124 minutes. The results with 8g achi content were 71, 69, 75, and 65 minutes, while the results at 10g achi content were 67, 62, 63, and 60 minutes. The results with 12g achi content were 63, 62, 60, and 56 minutes under the temperature and pressure respectively. The data obtained from the experiment signifies that introducing achi and altering the temperature and pressure to the cement slurry has a significant effect on the properties of the cement by accelerating the thickening time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.