Abstract

Recent genome-wide association studies have identified MAD1L1 (mitotic arrest deficient-like 1) as a susceptibility gene for bipolar disorder and schizophrenia. The minor allele of the single-nucleotide polymorphism (SNP) rs11764590 in MAD1L1 was associated with bipolar disorder. Both diseases, bipolar disorder and schizophrenia, are linked to functional alterations in the reward system. We aimed at investigating possible effects of the MAD1L1 rs11764590 risk allele on reward systems functioning in healthy adults. A large homogenous sample of 224 young (aged 18-31 years) participants was genotyped and underwent functional magnetic resonance imaging (fMRI). All participants performed the 'Desire-Reason Dilemma' paradigm investigating the neural correlates that underlie reward processing and active reward dismissal in favor of a long-term goal. We found significant hypoactivations of the ventral tegmental area (VTA), the bilateral striatum and bilateral frontal and parietal cortices in response to conditioned reward stimuli in the risk allele carriers compared with major allele carriers. In the dilemma situation, functional connectivity between prefrontal brain regions and the ventral striatum was significantly diminished in the risk allele carriers. Healthy risk allele carriers showed a significant deficit of their bottom-up response to conditioned reward stimuli in the bilateral VTA and striatum. Furthermore, functional connectivity between the ventral striatum and prefrontal areas exerting top-down control on the mesolimbic reward system was reduced in this group. Similar alterations in reward processing and disturbances of prefrontal control mechanisms on mesolimbic brain circuits have also been reported in bipolar disorder and schizophrenia. Together, these findings suggest the existence of an intermediate phenotype associated with MAD1L1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.