Abstract

Grand canonical Monte Carlo (GCMC) simulations were performed to investigate CO2 and H2 sorption in an rht-metal–organic framework (MOF) that was synthesized with a ligand having a nitrogen-rich trigonal core through trisubstituted triazine groups and amine functional groups. This MOF was synthesized by two different groups, each reporting their own distinct gas sorption measurements and crystal structure. Electronic structure calculations demonstrated that the small differences in the atomic positions between each group’s crystal structure resulted in different electrostatic parameters about the Cu2+ ions for the respective unit cells. Simulations of CO2 sorption were performed with and without many-body polarization effects and using our recently developed CO2 potentials, in addition to a well-known bulk CO2 model, in both crystallographic unit cells. Simulated CO2 sorption isotherms and calculated isosteric heats of adsorption, Qst, values were in excellent agreement with the results reported previousl...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.