Abstract
The spin trapping ability of the nitrones 2,4-disulphophenyl-N-tert-butyl nitrone (NXY-059), 2-sulphophenyl-N-tert-butyl nitrone (S-PBN) and α-phenyl-N-tert-butyl nitrone (PBN) for both hydroxyl and methanol radicals was investigated using electron paramagnetic resonance (EPR) spectroscopy. The radicals of interest were generated in situ in the spectrometer under constant flow conditions in the presence of each nitrone. The spin adducts formed were detected by EPR spectroscopy. This approach allowed for quantitative comparison of the EPR spectra of the spin adducts of each nitrone. The results obtained showed that NXY-059 trapped a greater number of hydroxyl and methanol radicals than the other two nitrones, under the conditions studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.