Abstract

Understanding the flow and mixing of rod-like particles is fundamental because of the widespread use of rods in the process industry. In this paper, discrete element method is used to investigate the flow and mixing of rod-like particles in a horizontal rotating drum, with rod-like particles being modeled by super-ellipsoids. The influence of the aspect ratio of the rod and the rotation speed of the drum on the flow of rod-like particles is studied. The investigation of spherical particles is also included in this paper to reveal the differences between rod-like and spherical particles. The simulation results show that the flow of rods is more intermittent than that of spheres and that there is more intermittent flow for rod-like particles with larger aspect ratios. Both the aspect ratio of the rod and the rotation speed of the drum considerably influence particle mixing. The mixing rate, as quantified by the slope of the variation in the mixing index with respect to drum revolution, increases as rotation speed and aspect ratio decrease. The study of particle orientation indicates that rod-like particles have a preferred orientation during rotation of the drum: the major axis of the rod inclines to be parallel to the end plate of the drum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.