Abstract

The dissipative dynamics of nuclear fission is a well confirmed phenomenon that can be either described by a Kramers-modified statistical model or by a dynamical model employing the Langevin equation. Although dynamical models as well as statistical models incorporating fission delays have been found to explain the measured fission observables in several studies, they present conflicting results for shell closed nuclei in the mass region of 200. Notably, an analysis of the recent data on neutron shell closed nuclei in the excitation energy range of 4080 MeV failed to provide a satisfactory description of the data, which was attributed to a mismatch with shell effects and/or entrance channel effects, without reaching a definite conclusion. In the present study, we demonstrate that a well established stochastic dynamical code can simultaneously reproduce the available data for pre-scission neutron multiplicities and fission and evaporation residue excitation functions for the following neutron shell closed nuclei Po and Rn and their isotopes Po and Rn without the need for including any extra shell or entrance channel effects. The relevant calculations are performed by using a phenomenological universal friction form factor with no ad-hoc adjustment of the model parameters. However, we note a significant deviation, beyond experimental errors, for some Fr isotopes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.