Abstract

Rainfall-triggered flood and landslide hazards pose significant threats to human lives and infrastructure worldwide. This study aims to evaluate the applicability of three satellite rainfall data sets—namely, CMORPH, GPM, and TRMM—for the prediction of flood and landslide hazards using a coupled hydrological-slope stability model. The spatial distribution of annual rainfall from the three satellite data sets was similar to that of gauge rainfall, with an increasing trend from the north to the south of Shaanxi Province. The average annual rainfall of CMORPH was the lowest, while that of TRMM was the highest. The modeled discharges forcing by satellite rainfall generally matched the observed discharges at four hydrological stations for the period 2010–2012, with average correlation coefficients of 0.51, 0.61, and 0.57 for the CMORPH, GPM, and TRMM rainfall, respectively. The exceedance probabilities of modeled discharges for the three satellite rainfall data sets were close to those of the observations, particularly when the discharges were low. Moreover, the landslide prediction results demonstrated that the three satellite rainfall data sets could simulate the spatial distribution of landslide events well; these simulations were consistent with the information in the landslide inventory map. Furthermore, when compared to the classical Intensity-Duration (ID) rainfall threshold method, the physically based slope stability model presented higher global accuracy under all three satellite rainfall data sets. The global accuracy of GPM rainfall was the highest among the three data sets (0.973 for GPM vs. 0.951 for CMORPH and 0.965 for TRMM), indicating that GPM rainfall provides the highest quality compared to CMORPH and TRMM rainfall. These findings provide a crucial basis for the application of satellite rainfall data in the context of flood and landslide prediction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call