Abstract

Building integrated photovoltaic (BIPV) glazing is currently regarded as a promising building material with a wide range of benefits. Photovoltaic combined vacuum glazing is a relatively new innovative concept in BIPV glazing. On the other hand, photovoltaic combined hybrid vacuum glazing (PVCHVG) is a rarely studied topic in which an air gap exists between vacuum glazing and photovoltaic glazing to form an insulated glazing unit. This paper investigates the overall energy-saving performance of a CdTe-based semi-transparent PVCHVG. A dynamic simulation model was developed and validated with an outdoor experiment to explore the energy-saving performance of the PVCHVG under five different climate conditions in China, and the results were compared with commonly used window systems. The results indicated good insulation properties against both heat loss and heat gain due to the combined action of vacuum glazing and semi-transparent photovoltaic glazing. Compared to clear single-glazing and double-glazing window systems, PVCHVG can save overall energy consumption up to 59.39% and 39.97% in heating-dominated region, and 76.33% and 73.766% in cooling-dominated region, respectively. Furthermore, the PVCHVG window system generated electricity with a good performance ratio and total system efficiency ranging from 85.7% to 85.78% and 7.45%–7.55%, respectively, considering five climate conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call