Abstract
Within-field spatial variability reduces growers’ return on investment and overall productivity while potentially increasing negative environmental impacts through increased soil erosion, nutrient runoff, and leaching. The hypothesis that integrating energy crops into non-profitable segments of agricultural fields could potentially increase grain yield and biomass feedstock production was tested in this study using a statewide analysis of predominantly corn- and soy-producing counties in Iowa. Basic and rigorous controls on permissible soil and soil-carbon losses were imposed on harvest of crop residues to enhance year-to-year sustainability of crop and residue production. Additional criteria limiting harvesting costs and focus on large-area subfields for biomass production were imposed to reduce the impacts of energy crop integration on grain production. Model simulations were conducted using 4 years (2013–2016) of soil, weather, crop yield, and management practice data on all counties in Iowa. Miscanthus (Miscanthus x giganteus), switchgrass (Panicum virgatum), and crop-residue-based bioenergy feedstock systems were evaluated as biomass. Average energy crop and plant residue harvesting efficiencies were estimated at 50 and 60%, respectively. Because of higher potential yields, average logistics costs for miscanthus-based biomass production were 15 and 23% lower than switchgrass-based and crop residue-based biomass productions, respectively, under basic sustainability controls, and 17 and 26% lower under rigorous sustainability controls. Subfield shape, size, area, and harvest equipment size were the dominant factors influencing harvesting cost and efficiency suggesting that in areas where subfields are predominantly profitable or harvesting efficiencies low, other options such as prairie strips, buffer zones around fields, and riparian areas should be investigated for more profitable biomass production and sustainable farming systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.