Abstract
Physical human-robot interfaces are a challenging aspect of exoskeleton design, mainly due to the fact that interfaces tend to migrate relatively to the body leading to discomfort and power losses. Therefore, the key is to develop interfaces that optimize attachment stiffness, i.e., reduce relative motion, without compromising comfort. To that end, we propose a method to obtain the optimal attachment pressure in terms of connection stiffness and comfort. The method is based on a soft robotic interface capable of actively controlling strapping pressure which is coupled to a cobot. Hereby the effects of strapping pressure on energetic losses, connection stiffness, and perceived comfort are analyzed. Results indicate a trade-off between connection stiffness and perceived comfort for this type of interface. An optimal strapping pressure was found in the 50 to 80 mmHg range. Connection stiffness was found to increase linearly over a pressure range from 0 mmHg (stiffness of 1139 N/m) to 100 mmHg (stiffness of 2232 N/m). And energetic losses were reduced by 42% by increasing connection stiffness. This research highlights the importance of strapping pressure when attaching an exoskeleton to a human and introduces a new adaptive interface to improve the coupling from an exoskeleton to an individual.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.