Abstract

BackgroundBiogeographers seek to understand the influences of global climate shifts and geologic changes to the landscape on the ecology and evolution of organisms. Across both longer and shorter timeframes, the western North American landscape has experienced dynamic transformations related to various geologic processes and climatic oscillations, including events as recently as the Last Glacial Maximum (LGM; ~20 Ka) that have impacted the evolution of the North American biota. Redside shiner is a cyprinid species that is widely distributed throughout western North America. The species’ native range includes several well-documented Pleistocene refugia. Here we use mitochondrial DNA sequence data to assess phylogeography, and to test two biogeographic hypotheses regarding post-glacial colonization by redside shiner: 1) Redside shiner entered the Bonneville Basin at the time of the Bonneville Flood (Late Pleistocene; 14.5 Ka), and 2) redside shiner colonized British Columbia post-glacially from a single refugium in the Upper Columbia River drainage.ResultsGenetic diversification in redside shiner began in the mid to late Pleistocene, but was not associated with LGM. Different clades of redside shiner were distributed in multiple glacial age refugia, and each clade retains a signature of population expansion, with clades having secondary contact in some areas.ConclusionsDivergence times between redside shiner populations in the Bonneville Basin and the Upper Snake/Columbia River drainage precedes the Bonneville Flood, thus it is unlikely that redside shiner invaded the Bonneville Basin during this flooding event. All but one British Columbia population of redside shiner are associated with the Upper Columbia River drainage with the lone exception being a population near the coast, suggesting that the province as a whole was colonized from multiple refugia, but the inland British Columbia redside shiner populations are affiliated with a refugium in the Upper Columbia River drainage.

Highlights

  • Biogeographers seek to understand the influences of global climate shifts and geologic changes to the landscape on the ecology and evolution of organisms

  • Phylogenies produced by maximum likelihood (ML) and Bayesian analyses were similar, so only the ML phylogeny is shown, but ML bootstrap values and Bayesian posterior probabilities are mapped onto the nodes (Figure 2)

  • The earliest margin of the 95% credible interval of this divergence time estimate overlaps with the presence of a large lake that formed in the Bonneville Basin approximately 650,000 years ago [83], it remains unclear whether the catastrophic flooding event proposed by Ore [82] occurred at that time

Read more

Summary

Introduction

Biogeographers seek to understand the influences of global climate shifts and geologic changes to the landscape on the ecology and evolution of organisms. Across both longer and shorter timeframes, the western North American landscape has experienced dynamic transformations related to various geologic processes and climatic oscillations, including events as recently as the Last Glacial Maximum (LGM; ~20 Ka) that have impacted the evolution of the North American biota. Climatic oscillations during the Pleistocene have played a significant role in the evolution of the western North American biota by forcing organisms through a series of range contractions and expansions, range shifts, or localized extinctions as glacial ice sheets expanded and retracted [7]. Some taxa have retained genetic signatures of survival in northern and southern refugia along the Pacific Coast [27,43,44].

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call