Abstract

Dexamethasone, a glucocorticoid commonly used in pediatric patients, has potent anti-inflammatory and immunosuppressive properties. However, it is associated with side effects such as reduced lung function and decreased immunity. Pulmonary surfactant lipids are closely linked to lung disease and play a role in reducing surface tension, immune response and antiviral activity. The dysregulation of lipid metabolism is closely associated with lung disease. Hence, untargeted lipidomics may be instrumental in elucidating the effects of dexamethasone on pulmonary surfactant lipids. We obtained surfactant lipid samples from the bronchoalveolar lavage fluid of young mice injected subcutaneously with dexamethasone and conducted a comprehensive lipidomic analysis, comparing them with a control group. We observed a decrease in lipids, such as phosphatidylcholine, phosphatidylglycerol and phosphatidylethanolamine, and an increase in ceramide, fatty acid, diacylglycerol and monoglyceride, which may impact lung health. This study revealed the influence of dexamethasone on pulmonary surfactant lipids, offering new insights into adverse reactions in clinical settings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call