Abstract

In this paper, for the first time, using a three-dimensional (3D) thermo-elastoplastic model, the effects of cooling rate and casting speed on the continuous casting (CC) process are studied. Some significant parameters such as solidified shell thickness, mushy zone thickness, metallurgical length, and residual stress in the CC process under different cooling rates and casting speeds are investigated. All analyses are performed using the meshless local Petrov–Galerkin (MLPG) method. The effective heat capacity method is employed to simulate the phase change process. The von Mises yield function with isotropic hardening is used to simulate the stress state, and material parameters are assumed as temperature dependent. To demonstrate the accuracy and efficiency of the present 3D MLPG method in thermo-mechanical analysis of highly nonlinear solidification problems, the obtained results are compared with an exact analytical solution. Several numerical examples for different cooling rates and casting speeds are provided to investigate their effects on the CC process parameters, as well as on the stress, displacement, and temperature fields induced in the cast material. The results from the analyses can be very useful for the optimal design of CC processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call