Abstract

As criminal activity increasingly relies on digital devices, the field of digital forensics plays a vital role in identifying and investigating criminals. In this paper, we addressed the problem of anomaly detection in digital forensics data. Our objective was to propose an effective approach for identifying suspicious patterns and activities that could indicate criminal behavior. To achieve this, we introduce a novel method called the Novel Support Vector Neural Network (NSVNN). We evaluated the performance of the NSVNN by conducting experiments on a real-world dataset of digital forensics data. The dataset consisted of various features related to network activity, system logs, and file metadata. Through our experiments, we compared the NSVNN with several existing anomaly detection algorithms, including Support Vector Machines (SVM) and neural networks. We measured and analyzed the performance of each algorithm in terms of the accuracy, precision, recall, and F1-score. Furthermore, we provide insights into the specific features that contribute significantly to the detection of anomalies. Our results demonstrated that the NSVNN method outperformed the existing algorithms in terms of anomaly detection accuracy. We also highlight the interpretability of the NSVNN model by analyzing the feature importance and providing insights into the decision-making process. Overall, our research contributes to the field of digital forensics by proposing a novel approach, the NSVNN, for anomaly detection. We emphasize the importance of both performance evaluation and model interpretability in this context, providing practical insights for identifying criminal behavior in digital forensics investigations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.