Abstract

Abstract. In the Province of Flevoland, the Netherlands, land subsidence poses a problem to agriculture and water management. The peat layers in the soil are susceptible to compression and oxidation causing further subsidence. Applying subirrigation through the tile drain system to maintain saturation of the peat may be a measure to slow down subsidence. A study was therefore carried out at two sites, Nagele and Zeewolde, to assess the impact of subirrigation in the peat on the seasonal variation in soil moisture content, and corresponding redox conditions. Bacterial community analysis was carried out to verify the hydrochemical observations. Subirrigation proved to be an efficient measure to maintain a high water level in the peat soil as long as the permeability in the upper part of the peat was sufficient to allow transmission of water into the inter-drain area and when the peat layer extended enough below the minimum regional water level to prevent drainage to the sand layer underneath. The peat showed dual porosity and water levels could well be maintained by subirrigation at the Nagele site. At the Zeewolde site, the variability in the thin peat layer allowed drainage to occur in the sand layer, preventing subirrigation to maintain high water levels. However, at both sites the peat layer remained close to saturation throughout the summer, which may be caused by the fine-grained mineral layer isolating the peat from water extraction via evapotranspiration. Nitrate concentrations of up to 100 mg L−1 were observed were high (>50 mg L−1) in the oxic mineral top layer but were low in the peat (0.3 mg L−1) at both Nagele and Zeewolde sites. Sulphate concentrations also showed a decrease with depth in the peat at Nagele, indicating a transition from sub-oxic above 1.5 m depth to anoxic conditions at 3.5 m depth. The hydrochemical observations in the soil moisture in the peat at Nagele confirmed that conditions were sub-oxic in the upper part of the peat (0.7 m below soil surface) to anoxic at greater depth (3.5 m). Soil microbe analyses showed few nitrification bacteria in the peat, whereas communities specialised in denitrification and ammonification were present, as well as sulphate reducing bacteria and methanogenic species. This confirmed the sub-oxic to anoxic conditions in the peat deduced from the hydrochemical observations. At Zeewolde, conditions remained sub-oxic throughout the profile.

Highlights

  • The Flevoland polders were reclaimed in the mid-20th century from the former Zuiderzee, which was closed off from the North Sea to form the fresh water IJsselmeer lake

  • The study shows that several conditions need to be met for keeping a peat layer saturated through subirrigation by infiltration of water through the tile drain system

  • The present study showed that the 6 m inter-drain distance was sufficiently low to cause a fast response of the phreatic level at the centre of the drains

Read more

Summary

Introduction

The Flevoland polders were reclaimed in the mid-20th century from the former Zuiderzee, which was closed off from the North Sea to form the fresh water IJsselmeer lake. The land surface is currently about 3–4 m below sea level, and subsidence continues (Fokker et al, 2015) posing a significant threat to agricultural practices (Vogelenzang et al., 2019), complicating water management and threatening water quality by increased upward seepage of saline water. Main causes of subsidence were the loss of pore pressure following reclamation and subsequent gradual lowering of phreatic water levels by the Water Board to create and maintain favourable conditions for agriculture. This resulted in compression and compaction of the clayey top soil layer and the peat layer underneath. Drainage is accomplished by a system of shallow ditches dug at typical inter-distances of more than 30 m (Couwenberg, 2018)

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.