Abstract

When working on underground projects, especially where ground is burst prone, it is of a high significance to accurately predict the risk of rockburst. The present paper integrates the firefly algorithm (FA) and artificial neural network (ANN) aiming at modeling the complex relationship between the rockburst risk in deep mines and tunnels and factors effective on this phenomenon. The model was established and validated through the use of a data set extracted from previously conducted studies. The data set involves a total of 196 reliable rockburst cases. The use of smart systems was used to classify and determine patterns in this research using model development. The hybrid FA–ANN model provides a solution for determining different classes of hazard under different conditions. The capability of these developed systems was implemented to determine the four types of levels defined for this phenomenon. The results of these systems led to new solutions to classify this phenomenon by success rates. Each system, given its performance, yields a unique error. Finally, by combining the number of correctly classified classes and their error values, the success rates in the classification of rockburst phenomena in mines and underground tunnels were evaluated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.