Abstract

Along with the recent improvement in medical image analysis, exploring deep learning based approaches in the context of mammography image processing has become more realistic. In this paper, we concatenate on both conventional machine learning and deep learning approaches to classify mass abnormalities in mammographic images. Using a deep convolutional neural network (CNN) architecture, the effect of performing various augmentation approaches on the raw pre-detected masses fed to the network is investigated. We propose an extended augmentation method, specific filter bank responses and also a texton-based approach to generate characteristic filtered features for various types of mass textures and eventually use the resulting image data as input for training the CNN. Evaluating our proposed techniques on the DDSM dataset, we show that mammographic mass classification can be tackled effectively by employing an extended augmentation scheme. We obtained 87% accuracy which is comparable to the currently reported results for this task.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.