Abstract

Titanium (Ti4+ ) containing materials have been widely used in medical applications due to its associated bioactivity in vivo. This study investigates the replacement of Si4+ with Ti4+ within the system SiO2 -Na2 O-CaO-P2 O5 to determine its influence on glass structure. This strategy was conducted in order to control the glass solubility to further improve the cellular response. Ti4+ incorporation was found to have little influence on the glass transition temperature (Tg = 520 ± 8°C) and magic angle spinning-nuclear magnetic resonance (MAS-NMR) shifts (-80 ppm) up to additions of 18 wt %. However, at 30 wt % the Tg increased to 600°C and MAS-NMR spectra shifted to -88 ppm. There was also an associated reduction in glass solubility as a function of Ti4+ incorporation as determined by inductively coupled plasma optical emission spectroscopy where Si4+ (1649-44 mg/L) and Na+ (892-36 mg/L) levels greatly reduced while Ca2+ (3-5 mg/L) and PO43- (2-7 mg/L) levels remained relatively unchanged. MC3T3 osteoblasts were used for cell culture testing and it was determined that the Ti4+ glasses increased cell viability and also facilitated greater osteoblast adhesion and proliferation to the glass surface compared to the control glass. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1703-1712, 2016.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call