Abstract

ABSTRACT Polarimetric Persistent Scatterer Interferometric Synthetic Aperture Radar (PS-InSAR) is an effective technique for increasing the number and phase quality of selected persistent scatterer (PS) pixels. In this technique, multitemporal polarimetric data is used to find the dominant scattering mechanism of targets in a stack of SAR data by polarimetric optimization and to improve the performance of PSI methods for deformation studies. The main goal of polarimetric optimization is to find the optimum scattering mechanism to generate interferograms with better quality. In this paper, we investigated the effect of the physical scattering mechanism on the temporal coherence optimization results. In this framework, we only optimized the physical scattering mechanism. This optimization is based on maximizing the temporal coherency criterion by changing the type of scattering mechanism to increase the number of PS with good phase quality. The proposed method is tested using a dataset of 17 dual-pol SAR data (VV/VH) acquired by Sentinel1-A satellite. This paper concludes that the phase quality of PS pixels can be improved by optimization of physical scattering mechanism. Also, the results show an overall increase of PS pixels density in different areas with respect to the conventional channel of VV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.