Abstract

Cardiac fibrosis, in which cardiac fibroblasts differentiate into myofibroblasts, leads to oversecretion of the extracellular matrix, results in increased stiffness, and facilitates disequilibrium of cellular redox state, further leading to oxidative stress and various degrees of cell death. However, the relationship between the matrix stiffness and the redox status of cardiac fibroblasts remains unclear. In this work, we constructed an in vitro cardiac fibrosis model by culturing cardiac fibroblasts on polyacrylamide gels with tunable stiffness and characterized the differentiation of cardiac fibroblasts to myofibroblasts by immunofluorescence staining of α-smooth muscle actin. We then applied scanning electrochemical microscopy (SECM) with a depth scan mode to in situ and quantitatively assess the redox status by monitoring the glutathione (GSH) efflux rate (k) through the redox reaction between GSH (a typical indicator of cellular redox level) released from cardiac fibroblasts and SECM probe-oxidized ferrocenecarboxylic acid ([FcCOOH]+). The SECM results demonstrate that the GSH efflux from the cardiac fibroblasts decreased with increasing substrate stiffness (i.e., mimicking the increased fibrosis degree), indicating that a more oxidizing microenvironment facilitates the cell differentiation and GSH may serve as a biomarker to predict the degree of cardiac fibrosis. This work provides an SECM approach to quantify the redox state of cardiac fibroblasts by recording the GSH efflux rate. In addition, the newly established relationship between the redox balance and the substrate stiffness would help to better understand the redox state of cardiac fibroblasts during cardiac fibrosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call