Abstract

Recently, radiation-absorbing phase change material (PCM) for thermal storage that can discharge thermal energy on demand when no radiation is present has been developed and tested indoors. Organic materials with limited thermal conductivity slow down the thermal response processes when charging and discharging. For various industrial applications, much research is devoted to the introduction of solar collectors with the best possible integration of solar thermal collector and PCM in terms of both shape and material. In this study, the performance of a solar collector is examined in relation to the additive effects of aluminum particles in spherical capsules. For the transfer fluid temperature with the behavior of the heat storage, a mathematical model of the solar collector was created. The integrated system consists of two primary steps: a first phase that involves an isolated duct covered in glass, and a second step that involves an array of spherical capsules used as storage. The solar air collector is 1.32 m in width and 2.450 m in length. The PCM unit has a 7.7 cm diameter, 0.15 cm thickness, and is filled with a paraffin wax with concentrations between 0.1 and 0.5 weight of nanoparticle aluminum powder. The air mass flow rate varies from 0.03 kg/s up to 0.09 kg/s, while the temperature varied from 30 to 35 °C. The results obtained from experiments agreed with the predicted results. The reduction in charging time was approximately 70% as the cooling rate increased. The improvement of efficiency of thermal storage reached 76.8% and 71%, at mass flow rates 0.07 kg/s and 0.05 kg/s for pure paraffin wax. The overall thermal storage performance for the system was enhanced from 21.7% to 78.9%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call