Abstract

Broken rails or welds are the main causes of derailment in railway networks. Therefore, a wheel-rail interaction model, which precisely estimates contact-impact forces in the presence of broken rails, can have a significant effect on derailment risk reduction. This paper attempts to present contact-impact forces in the vicinity of broken rails by employing a detailed 3D finite element model. The model is verified using a field test carried out on a ballasted railway track. Effects of train speed, gap length, axle load and railpad and ballast characteristics are studied on rail-wheel contact forces as well as on railpad and ballast forces. Results suggest that increasing the train speed from 60 km/h to 110 km/h would increase dynamic impact force from 2.46 to 4.11. It is also observed that increasing axle load results in an increase in the wheel-rail impact forces and in railpad and ballast forces, while leading to a reduced dynamic impact factor. Furthermore, investigating the effect of the track parameters demonstrates that ballast stiffness is the most important characteristic of the track, which has a reverse effect on dynamic impact forces. Moreover, unloading length increase and consequently derailment risk increase is highly sensitive to increasing train speed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call