Abstract

Operating parameters affect the wear of abrasive tools during the polishing stage in building stone processing plants. This study investigates the effects of essential operating parameters including polishing head pressure, head rotation speed and water flow rate on the wear of the abrasive tools. For this purpose, a building stone abrasivity test was used to determine the weight loss of the abrasive tools during laboratory polishing of fifteen different types of Iranian granitic building stones. The standard operating parameters of the test were a polishing head pressure of 5 bar, a head rotation speed of 300 revolutions per minute (rpm), and a water flow rate of 4 L/min. The values of the operating parameters were changed to values within the range from ±25% and ±50% of the standard conditions in order to investigate the effect of variations in these parameters on the wear of the abrasive tools during the polishing stage. The results of different tests showed that the wear of the abrasive tools was directly proportional to the pressure up until a critical value of around 6.25 bar, after which it gradually decreased. This nonlinear wear behavior does not conform to Archard’s well-known classical wear law. The FESEM images of the worn surfaces showed that due to excessive load, debonded abrasive particles could not be pulled out from the pin surface and led to an interlocking phenomenon between the pin and stone surface. It was also found that the wear of the abrasive tools increased with increasing head rotation speed, while it decreased with the water flow rate. Moreover, the main wear mechanism of tests was abrasive wear and in some cases with a mixture mode of adhesion and delamination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.