Abstract
The escalating demand for sustainable rubber products has spurred research into alternative reinforcing fillers, driven by concerns regarding the detrimental effects of using conventional fillers like carbon black and silica. In this investigation, nano-crystalline cellulose (NCC), derived from micro crystalline cellulose (MCC), sourced from sugarcane bagasse via acid hydrolysis, serves as a bio-filler to reinforce Nitrile Butadiene Rubber (NBR) matrices. NBR-NCC nano-composites were prepared using a two-roll mill, varying NCC from 1–5 parts per hundred rubber matrices, followed by hot press curing. NCC and NBR-NCC nano-composites were characterized using Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), curing characteristics, thermo-mechanical testing, thermal aging and motor oil resistance. Chemical interactions between the NCC and NBR matrix were verified with FTIR. The SEM images of the NCC showed a combination of rod-like and spherical morphologies and a homogenous dispersion of NCC in NBR-NCC nano-composites with some agglomeration, notably at higher percentages of NCC. It is shown that the cure time decreases with increasing NCC loading which mimics a shorter industrial production cycle. The results also showed an increase in tensile strength, hardness, oil resistance and a rise in degradation temperature when compared to NBR at approximately 34%, 36%, 38% and 32 °C, respectively, at 3 phr NCC loading. Furthermore, NBR-NCC nano-composites showed a lower decrease in mechanical properties after aging when compared to NBR. The findings of this research suggest that the NBR-NCC nano-composites may find applications in high oil resistance seals and rubber gloves where higher thermal stability is strictly required.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.