Abstract

Urban environment imposes challenges due to its dynamics and thermodynamic characteristics of the built environment. The present study aims to study the effect of lockdown during COVID-19 on the spatio-temporal land surface temperature (LST) patterns in Dehradun city. The TIRS sensor data of 14 April 2020 (post-lockdown), 28 April 2019, 25 April 2018 and 08 May 2017 were downloaded, and LST was retrieved using radiative transfer equation. The wardwise change in LST, urban hot spots and thermal comfort was studied as a function of built-up density. It was observed that there was an overall decrease in LST values in Dehradun city in post-COVID lockdown period. Wards with high built-up density had minimum decrease in LST; on the contrary, wards with large proportion of open spaces and having low, medium built-up density had the maximum decrease in LST. Hot spot analysis was carried out using Getis Ord GI* statistic, and the level of thermal comfort was found using the urban thermal field variance index. It was observed that there was an increase in number of hot spots accompanied by a decrease in thermal comfort level post-lockdown. The methodology proposed in the present study can be applied to other Indian cities which exhibit similar growth patterns and will provide a tool for rational decision making.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.