Abstract
The aim of this study was to evaluate the effect of K-characteristic radiation on the performance of scintillator crystals incorporated in nuclear medicine detectors (LSO, BGO, GSO). K-characteristic radiation is produced within materials of at least one high atomic number element (e.g. Lu, Gd, Bi). This radiation may either be reabsorbed or it may escape the scintillator. In both cases the light emission efficiency of the scintillator may be affected resulting in either spatial or energy resolution degradation. A computational program, based on Monte Carlo methods, was developed in order to simulate the transport of K-characteristic radiation within the most commonly used scintillator materials. Crystal thickness was allowed to vary from 0.5 up to 15 mm. A monoenergetic pencil beam, with energy varying from 0.60 to 0.511 MeV was considered to fall on the center of the crystal surface. The dominant γ-ray interactions (elastic and inelastic scattering and photoelectric absorption) were taken into account in the simulation. Results showed that, depending on crystal thickness, incident photon energy and scintillator's intrinsic properties (L or K-fluorescence yield, effective atomic number and density), the scintillator's emission efficiency may be significantly reduced and affect spatial or energy resolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.