Abstract

In this study, samples of commercial Portland cement mixed with 30% weight of crushed waste silicate glass were prepared in the shape of well-dried cylinders. Then, their physical and mechanical properties were investigated for two types of samples: samples without exposure and samples with exposure to gamma-ray and neutron irradiation. A notable deterioration of the physical properties of the irradiated samples relative to the non-irradiated ones was recorded. All the spectroscopic analyses were performed for the samples with exposure and without exposure to gamma-ray and neutron irradiation. The XRD emerging peaks of irradiated samples were studied to estimate the presence and stabilities of major peaks indicating the presence of the main compositions of cement with the amorphous nature of glass. FT-IR transmittance spectra were identified and the bonds were located close to those of identical glasses. Moreover, SEM images and EDX analysis were conducted on the two types of composite samples (without exposure and with exposure to gamma and neutron irradiation) to specify the change in the physical appearance and the chemical composition after irradiation. The attenuation parameters were computed theoretically with the assistance of Phy-X/PSD software to evaluate the gamma-ray and neutron shielding properties by defining the composition and the density of the samples. The irradiation was found to have a negative impact on the shielding ability of the prepared samples where there was an over-reduction in the parameters calculated with the probability that the damage may increase with longer exposure to the radiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.