Abstract
It is now known that over-consumption of caffeine by pregnant mothers could have detrimental effects on normal fetal development. However, it remains obscure how caffeine's harmful effect impacts directly or indirectly on the developing embryo/fetus through damaging placenta development. In this study, we demonstrated the morphological similarities between the yolk sac and chorioallantoic membranes (CAM) of chick embryos and the villi of the mammalian placenta. Using the chick yolk sac and the CAM as a model, we found that 5-15 µmol per egg of caffeine exposure inhibited angiogenesis. Under the same condition, cell proliferation in extraembryonic mesoderm was reduced while apoptosis was enhanced. Semi-quantitative RT-PCR analysis revealed that caffeine treatment down-regulated VEGF, VEGFR2, PIGF, IGF2 and NRP1 expression, but up-regulated Ang1 and Ang2 expression. We performed in situ hybridization to show VE-cadherin expression and as to demonstrate the blood vessels in the CAM and yolk sac membranes. This distribution of the VE-cadherin(+) blood vessels was determined to be reduced after caffeine treatment. Furthermore, MDA activity was induced after caffeine exposure, but GSH-PX activity was inhibited after caffeine exposure; SOD activity was unchanged as compared with the control. In summary, our results suggest that caffeine exposure could negatively impact on angiogenesis in the chick yolk sac and CAM by targeting angiogenesis-related genes. Some of these genes are also involved in regulating excess ROS generation. The results implied that the negative impact of caffeine on fetal development was partly attributed to impaired placental angiogenesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.