Abstract

The inhomogenieties of the foundation can be modeled explicitly in standard FEM procedure, however, the results vary significantly with the extent of foundation block modeled and mechanism of applying the input earthquake excitation. The substructure approach provides mathematically exact solution but assumes average properties for the entire foundation as viscoelastic half space. This paper has carried out detailed investigations with varying impedance contrasts and different size of foundation block to show that the results, with suitably deconvoluted free-field ground acceleration time-history applied at the base of foundation block in the FEM approach, are in good agreement with the substructure approach. However, the other variants of the FEM approach may lead to erroneous and overestimated stresses in the dam body. As the foundation of gravity dams can generally be approximated as an equivalent homogeneous half-space, the more accurate and efficient substructure approach can be used to model the dam-foundation rock interaction (SSI) effects in most practical situations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call