Abstract

Resting-state functional connectivity is a promising tool for understanding and characterizing brain network architecture. However, obtaining uninterrupted long recording of resting-state data is challenging in many clinically relevant populations. Moreover, the interpretation of connectivity results may heavily depend on the data length and functional connectivity measure used. We compared the performance of three frequency-domain connectivity measures: magnitude-squared, wavelet and multitaper coherence; and the effect of data length ranging from 3 to 9 minutes. Performance was characterized by distinguishing two groups of channel pairs with known different connectivity strengths. While all methods considered improved the ability to distinguish the two groups with increasing data lengths, wavelet coherence performed best for the shortest time window of 3 minutes. Knowledge of which measure is more reliably used when shorter fNIRS recordings are available could make the utility of functional connectivity biomarkers more feasible in clinical populations of interest.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call