Abstract

This work evaluated the production of biogas and methane (CH4) through the anaerobic co-digestion (AcoD) of primary sludge (PS) from sewage treatment, food waste (FW), and crude glycerol (GL). To address the effect of the latter on AcoD stability and performance, biochemical methane potential (BMP) tests were carried out at different GL concentrations (1 and 3% v/v). Control experiments with PS or PS + FW were also performed. A modified Gompertz model was used to describe biogas/methane production behaviour. The results demonstrated that small increases in the organic load resulting from glycerol addition led to significant increments in biogas and methane production. Although methanogenesis was transiently inhibited in the BMP trials with the highest GL concentration, implying a longer adaptation period for methanogenic archaea, methane production was restored and even maximized under these conditions. The biogas yield amounted to 432.4 and 692.6 mL/gVS (removed) at 1% and 3% GL, respectively, while the methane yield corresponded to 343.3 (1% GL) and 525.7 mLCH4/gVS (3% GL). The latter represent increases of 45.4% and 122.7% compared to those achieved with PS + FW. Finally, the energy potential from the AcoD of the ternary mixture was estimated to evaluate its contribution to electricity supply in Brazil.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.