Abstract

Sleep deprivation (SD) induces cognitive impairments such as memory deficit. Brain-derived neurotrophic factor (BDNF) is considered as the most critical neurotrophin in the central nervous system that is involved in sleep and memory. The main receptor of BDNF, tropomyosin receptor kinase B (TrkB), is dramatically expressed in the hippocampus. Also, extracellular signal-regulated kinase (ERK) has a significant role in memory function. Crocin is a carotenoid chemical compound and the active component of the flower Crocus sativus L. (saffron) that improves memory function and increases the level of BDNF, TrkB and ERK. In this research, we aimed to investigate the effect of total SD (TSD, 24 h) and crocin on memory performance, and BDNF, TrkB and ERK hippocampal levels. Passive avoidance memory was assessed using step-through, and working memory was measured using Y-maze tasks. The level of proteins in both hemispheres of the hippocampus was evaluated using Western blotting. Crocin was injected intraperitoneally at doses of 1, 5 and 15 mg/kg. Twenty-four-hour TSD impaired both types of memories and decreased the level of all proteins in both hemispheres of the hippocampus. Crocin at all doses restored TSD-induced memory deficits. Crocin (15 mg/kg) reversed the effect of TSD on levels of all proteins. The adverse effect of TSD on the level of proteins in the hippocampus may disrupt synaptic plasticity and transmission, which induces memory impairment. Additionally, the restoration effect of crocin on the decrease in protein levels may be involved in its improvement effect on memory performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call