Abstract

This study aimed to investigate the effect of constant heat flux on the adsorption of doxorubicin by bio-MOF-11 biocarrier using molecular dynamics simulation. The research explores the behavior of drug molecule and carrier under different thermal conditions to understand the underlying mechanisms of adsorption. The modeled samples were made of bio-MOF-11 structure, trisodium phosphate buffer (as a drug), and aqueous environment in the presence of NaCl. Technically, the atomic interaction among various atoms inside a computational box was described using a Universal Force Field. The findings of this study could contribute to the development of more effective drug delivery systems and advance the understanding of the adsorption process in carriers. The present outputs predicted the external heat flux was an important parameter in the atomic evolution of the drug-MOF system. The 0.3 W/m2 value of heat flux was optimum for drug diffusion into the MOF sample. Numerically, the number of diffused drug particles and diffusion coefficient converged to 335 and 73.19 nm2/ns (respectively) in the optimum value of heat flux. So, it was concluded that heat flux implementation to the drug-MOF system and changing this external parameter manipulated the drug adsorption (drug delivery) procedure in the designed system for various clinical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.