Abstract
Abstract Shallow (<1 m deep) snowpacks on agricultural areas are an important hydrological component in many countries, which determines how much meltwater is potentially available for overland flow, causing soil erosion and flooding at the end of winter. Therefore, it is important to understand the development of shallow snowpacks in a spatially distributed manner. This study combined field observations with spatially distributed snow modelling using the UEBGrid model, for three consecutive winters (2013–2015) in southern Norway. Model performance was evaluated by comparing the spatially distributed snow water equivalent (SWE) measurements over time with the simulated SWE. UEBGrid replicated SWE development at catchment scale with satisfactory accuracy for the three winters. The different calibration approaches which were necessary for winters 2013 and 2015 showed the delicacy of modelling the change in shallow snowpacks. Especially the refreezing of meltwater and prevention of runoff and infiltration of meltwater by frozen soils and ice layers can make simulations of shallow snowpacks challenging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.