Abstract

In recent years, iron oxide nanorods find a lot of applications including drug delivery, cell separation, hyperthermia and magnetic resonance imaging. In this study the cytotoxicity of iron oxide nanorods was evaluated based on mouse fibroblast cell behavior and wistar rat’s liver and kidney function. At first for modification, nanorods were added to Dulbecco’s modified Eagle’s medium (DMEM) which contained a lot of sources of vitamins, amino acids, proteins in Fetal Bovine Serum (FBS). The MTT assay was employed for evaluating the toxic effects of 200 and 400μg/mL modified and non-modified iron oxide nanorods on L929 mouse fibroblast cells in a 24h period. Changes in cell granularity and size as well as cell cycle were investigated using flow cytometry. Moreover liver and kidney function test and serum iron level measurement were performed 24h after the injection of modified iron oxide nanorods via the tail peripheral vein of wistar rats. Results indicated that greater concentration of modified iron oxide nanorods had no significant effect on cell viability while greater concentration of non-modified iron oxide nanorods significantly decreased cell viability. Modified iron oxide nanorods did not have significant effects on cell cycle. The results of liver and kidney function tests did not differ significantly while a significant increase in serum iron level was observed. After H&E staining of slices, there were no changes on morphology of rat’s kidney and liver cells. This study suggests that short-time use of 200 and 400μg/mL iron oxide nanorods are probably safe. Further studies are needed for investigation of toxic effects of different concentrations, coatings, and exposure time periods of iron oxide nanorods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.