Abstract

At the core of redox flow reactors, the design of the flow field geometry –which distributes the liquid electrolyte through the porous electrodes– and the porous electrode microstructure –which provides surfaces for electrochemical reactions– determines the performance of the system. To date, these two components have been engineered in isolation and their interdependence, although critical, is largely overlooked. Here, we systematically investigate the interaction between state-of-the-art electrode microstructures (a paper and a cloth) and prevailing flow field geometries (flow through, serpentine and four variations of interdigitated). We employ a suite of microscopic, fluid dynamics, and electrochemical diagnostics to elucidate structure-property-performance relationships. We find that interdigitated flow fields in combination with paper electrodes –which features a uniform microstructure with unimodal pore size distribution– and flow-through configurations combined with cloth electrodes –which have a hierarchical microstructure with bimodal pore size distribution– provide the most favorable trade-off between hydraulic and electrochemical performance. Our analysis evidences the importance of carrying out the co-design of flow fields and electrode microstructures in tandem.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call