Abstract

Selenium- and sulfur-containing compounds can act as antioxidants by binding copper. To determine how this copper coordination results in the observed antioxidant activity, biologically relevant Cu(+) and Cu(2+) complexes with the formulae [Cu(dmit)(3)](+) (3), [Cu(dmise)(4)](+) (4a), and [Tpm(iPr)Cu(MISeox)](2+) (6) (dmise = N,N'-dimethylimidazole selone; dmit = N,N'-dimethylimidazole thione; MISeox = bis(1-methylimidazolyl)diselenide; Tpm(iPr) = tris(1,3-diisopropylpyrazolyl)methane) were synthesized, characterized, and their structures determined by single-crystal X-ray crystallography. In addition, kinetic studies using UV-vis spectroscopy indicate that dmise reduces Cu(2+) to Cu(+) three times faster than dmit. Coordination of dmise and MISeox to copper also results in more negative Cu(2+/+) reduction potentials (-373 mV and -503 mV) compared to dmit (-217 mV). These results highlight the different complexation behaviors and reactivities of analogous selone- and thione-containing compounds, traits which likely influence their antioxidant activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call