Abstract

The Jovian magnetosphere can undergo significant changes in its size due to varying external (e.g. solar activity) or internal (e.g. hot plasma pressure) conditions. Simulations have shown that the difference in the dayside stand-off distance between a compressed and an expanded state can be around 30 Jovian radii.In this work, we study the compressibility of the Jovian magnetosphere using a large ensemble of axisymmetric models, obtained from the recently updated UCL/AGA magnetodisc code. Each model is defined by its size (via the stand-off distance) and hot plasma content (via the hot plasma index). Using these models as virtual magnetopause crossings we estimate the compressibility index, calculated via changes in the dayside stand-off distance as a function of the external pressure, which characterises the overall response of the magnetosphere.We find that the system size plays an important role in the Jovian case, as we observe a change in the compressibility index as a function of the stand-off distance. This has also been noted in existing studies on Saturn, using a linear relation between changes in the stand-off distance and the external pressure.As a complementary study, we also estimate the compressibility index using magnetopause crossings from recently published catalogues based on JUNO data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.