Abstract
Volatile organic compounds (VOCs) are major ingredients of photochemical smog. It is essential to know the spatial and temporal variation of VOC emissions. In this study, we used the Positive Matrix Factorization (PMF) model for VOC source apportionment in Mexico City. We first analyzed a data set collected during the ozone season from March–May 2016. It includes 33 VOCs, nitrogen oxide (NO), nitrogen dioxide (NO2), the sum of nitrogen oxides (NOx), carbon monoxide (CO), sulfur dioxide (SO2) and particle matter with a diameter < 1 μm (PM1). Another PMF analysis focused only on VOC data obtained in the month of May between the years 2016, 2017, 2018, 2021, and 2022 to gain insights into interannual variations. While the use of fossil fuel through combustion and evaporation continues to be major fraction in Mexico City, additional sources could be identified. Apart from biogenic sources which become more important closer to the end of the ozone season, a second natural emission factor termed “geogenic”, was identified. Overall, anthropogenic sources range between 80–90%. Diurnal plots and bivariate plots show the relative importance of these emission source factors on different temporal and spatial scales, which can be applied in emission control policies for Mexico City.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.