Abstract

BackgroundAtherosclerotic peripheral arterial disease (PAD) affects 8–10 million people in the United States and is associated with a marked impairment in quality of life and an increased risk of cardiovascular events. Noninvasive assessment of PAD is performed by measuring the ankle-brachial index (ABI). Complex traits, such as ABI, are influenced by a large array of genetic and environmental factors and their interactions. We attempted to characterize the genetic architecture of ABI by examining the main and interactive effects of individual single nucleotide polymorphisms (SNPs) and conventional risk factors.MethodsWe applied linear regression analysis to investigate the association of 435 SNPs in 112 positional and biological candidate genes with ABI and related physiological and biochemical traits in 1046 non-Hispanic white, hypertensive participants from the Genetic Epidemiology Network of Arteriopathy (GENOA) study. The main effects of each SNP, as well as SNP-covariate and SNP-SNP interactions, were assessed to investigate how they contribute to the inter-individual variation in ABI. Multivariable linear regression models were then used to assess the joint contributions of the top SNP associations and interactions to ABI after adjustment for covariates. We reduced the chance of false positives by 1) correcting for multiple testing using the false discovery rate, 2) internal replication, and 3) four-fold cross-validation.ResultsWhen the results from these three procedures were combined, only two SNP main effects in NOS3, three SNP-covariate interactions (ADRB2 Gly 16 – lipoprotein(a) and SLC4A5 – diabetes interactions), and 25 SNP-SNP interactions (involving SNPs from 29 different genes) were significant, replicated, and cross-validated. Combining the top SNPs, risk factors, and their interactions into a model explained nearly 18% of variation in ABI in the sample. SNPs in six genes (ADD2, ATP6V1B1, PRKAR2B, SLC17A2, SLC22A3, and TGFB3) were also influencing triglycerides, C-reactive protein, homocysteine, and lipoprotein(a) levels.ConclusionWe found that candidate gene SNP main effects, SNP-covariate and SNP-SNP interactions contribute to the inter-individual variation in ABI, a marker of PAD. Our findings underscore the importance of conducting systematic investigations that consider context-dependent frameworks for developing a deeper understanding of the multidimensional genetic and environmental factors that contribute to complex diseases.

Highlights

  • Atherosclerotic peripheral arterial disease (PAD) affects 8–10 million people in the United States and is associated with a marked impairment in quality of life and an increased risk of cardiovascular events

  • Noninvasive assessment of PAD is performed by measuring the ankle-brachial index (ABI), the ratio of systolic blood pressure (SBP) at the ankle to the SBP in the arm

  • We identified 435 single nucleotide polymorphisms (SNPs) in 112 genes that have been previously implicated as playing a role in BP regulation, lipoprotein metabolism, inflammation, oxidative stress, and diabetes

Read more

Summary

Introduction

Atherosclerotic peripheral arterial disease (PAD) affects 8–10 million people in the United States and is associated with a marked impairment in quality of life and an increased risk of cardiovascular events. Noninvasive assessment of PAD is performed by measuring the ankle-brachial index (ABI) Complex traits, such as ABI, are influenced by a large array of genetic and environmental factors and their interactions. Atherosclerotic peripheral arterial disease (PAD) affects 8–10 million people in the United States [1,2] and is associated with a marked impairment in quality of life and an increased risk of stroke, myocardial infarction, and cardiovascular death [3]. Little is known regarding genetic factors influencing inter-individual variation in ABI

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.