Abstract

In India, majority of the generated municipal solid waste (MSW) was dumped in poorly managed landfills and dumpsites over the past decades and is an environmental and health hazard. Landfill mining is a promising solution to reclaim these sites along with the recovery of resources (materials and energy). During landfill mining operations, the combustible fraction is one of the major components recovered and needs proper management for maximizing resource recovery. For the identification of appropriate resource recovery options, knowledge of the physicochemical characteristics is required. The present study aims to assess the depth-wise change in the composition of legacy waste and the physicochemical characteristics of the combustible fraction. Furthermore, a material flow analysis considering the incineration of combustible fraction was performed to estimate the energy generation potential and the associated greenhouse gas (GHG) emissions. The results of the compositional analysis of dry legacy waste revealed that the fine fraction (<4 mm soil-like material) was dominating with a share of 36%. The depth-wise analysis showed a decrease in the calorific value with increasing landfill depth, while no specific trend was observed for the other parameters analyzed, including proximate and ultimate analysis, and chlorine content. The material flow analysis performed for 100 tonnes of wet legacy waste indicated that 52 tonnes of waste is combustible fraction. The GHG emissions through incineration of one tonne of dry combustible fraction would be 1389 kg CO2-eq, with 1125 kWh of electrical energy generation potential.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call