Abstract

Iron deficiency anemia (IDA) is a common health issue, and researchers are interested in overcoming it. Nanotechnology green synthesis is one of the recent approaches to making efficient drugs. In this study, we modeled curcumin-coated iron oxide nanoparticles (cur-IONPs) to study their predicted toxicity and drug-likeness properties, then to investigate mucoadhesive behavior by docking cur-IONPs with two main mucin proteins in gastrointestinal tract (GIT) mucosa (muc 5AC and muc 2). Furthermore, the stability of cur-IONPs/protein complexes was assessed by molecular dynamics. Our in-silico studies results showed that cur-IONPs were predicted to be potential candidates to treat IDA due to its mucoadhesive properties, which could enhance the bioavailability, time residency, and iron absorbance through GIT, in addition to its high safety profile with high drug-likeness properties and oral bioavailability. Finally, molecular dynamic simulation studies revealed stable complexes supporting strength docking studies. Our results focus on the high importance of in-silico drug design studies; however, they need to be supported with in vitro and in vivo studies to reveal the efficacy, toxicity, and bioavailability of cur-IONPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.